Contiki 3.x
Files | Data Structures | Macros | Typedefs | Functions | Variables
uIP IPv6 specific features

The uIP IPv6 stack provides new Internet communication abilities to Contiki. More...

Files

file  uip-ds6.h
 
    Network interface and stateless autoconfiguration (RFC 4862)

 

Data Structures

struct  uip_ds6_nbr
 An entry in the nbr cache. More...
 
struct  uip_ds6_prefix
 A prefix list entry. More...
 
struct  uip_ds6_addr
 Unicast address structure. More...
 
struct  uip_ds6_aaddr
 Anycast address. More...
 
struct  uip_ds6_maddr
 A multicast address. More...
 
struct  uip_ds6_netif
 Interface structure (contains all the interface variables) More...
 
struct  uip_ds6_element
 Generic type for a DS6, to use a common loop though all DS. More...
 
struct  uip_icmp6_error
 ICMPv6 Error message constant part. More...
 
struct  uip_nd6_ns
 A neighbor solicitation constant part. More...
 
struct  uip_nd6_na
 A neighbor advertisement constant part. More...
 
struct  uip_nd6_rs
 A router solicitation constant part. More...
 
struct  uip_nd6_ra
 A router advertisement constant part. More...
 
struct  uip_nd6_redirect
 A redirect message constant part. More...
 
struct  uip_nd6_opt_hdr
 ND option header. More...
 
struct  uip_nd6_opt_prefix_info
 ND option prefix information. More...
 
struct  uip_nd6_opt_mtu
 ND option MTU. More...
 

Macros

#define NBR_INCOMPLETE   0
 Possible states for the nbr cache entries.
 
#define UIP_DS6_DEFRT_NBS   0
 Configuration. More...
 
#define ADDR_TENTATIVE   0
 Possible states for the an address (RFC 4862)
 
#define ADDR_ANYTYPE   0
 How the address was acquired: Autoconf, DHCP or manually.
 
#define UIP_DS6_PERIOD   (CLOCK_SECOND/10)
 General DS6 definitions. More...
 
#define UIP_ICMP6_ECHO_REQUEST_LEN   4
 Echo Request constant part length.
 
#define UIP_ICMP6_ERROR_LEN   4
 ICMPv6 Error message constant part length.
 
#define UIP_ND6_OPT_HDR_BUF   ((uip_nd6_opt_hdr *)&uip_buf[uip_l2_l3_icmp_hdr_len + nd6_opt_offset])
 Pointer to ND option.
 
#define UIP_ND6_DEF_MAXDADNS   UIP_ND6_SEND_NA
 Do not try DAD when using EUI-64 as allowed by draft-ietf-6lowpan-nd-15 section 8.2.
 

Typedefs

typedef struct uip_ds6_nbr uip_ds6_nbr_t
 An entry in the nbr cache.
 
typedef struct uip_ds6_prefix uip_ds6_prefix_t
 A prefix list entry.
 
typedef struct uip_ds6_addr uip_ds6_addr_t
 Unicast address structure. More...
 
typedef struct uip_ds6_aaddr uip_ds6_aaddr_t
 Anycast address.
 
typedef struct uip_ds6_maddr uip_ds6_maddr_t
 A multicast address.
 
typedef struct uip_ds6_netif uip_ds6_netif_t
 Interface structure (contains all the interface variables)
 
typedef struct uip_ds6_element uip_ds6_element_t
 Generic type for a DS6, to use a common loop though all DS.
 
typedef struct uip_icmp6_error uip_icmp6_error
 ICMPv6 Error message constant part.
 

Functions

uip_ds6_nbr_tuip_ds6_nbr_add (const uip_ipaddr_t *ipaddr, const uip_lladdr_t *lladdr, uint8_t isrouter, uint8_t state)
 Neighbor Cache basic routines.
 
uip_ds6_nbr_tuip_ds6_get_least_lifetime_neighbor (void)
 
This searches inside the neighbor table for the neighbor that is about to
expire the next.
More...
 
void uip_ds6_init (void)
 Initialize data structures.
 
void uip_ds6_periodic (void)
 Periodic processing of data structures.
 
uint8_t uip_ds6_list_loop (uip_ds6_element_t *list, uint8_t size, uint16_t elementsize, uip_ipaddr_t *ipaddr, uint8_t ipaddrlen, uip_ds6_element_t **out_element)
 Generic loop routine on an abstract data structure, which generalizes all data structures used in DS6.
 
void uip_ds6_select_src (uip_ipaddr_t *src, uip_ipaddr_t *dst)
 Source address selection, see RFC 3484.
 
void uip_ds6_set_addr_iid (uip_ipaddr_t *ipaddr, uip_lladdr_t *lladdr)
 set the last 64 bits of an IP address based on the MAC address
 
uint8_t get_match_length (uip_ipaddr_t *src, uip_ipaddr_t *dst)
 Get the number of matching bits of two addresses.
 
void uip_ds6_send_rs (void)
 Send periodic RS to find router.
 
uint32_t uip_ds6_compute_reachable_time (void)
 Compute the reachable time based on base reachable time, see RFC 4861.
 
uint16_t uip_chksum (uint16_t *data, uint16_t len)
 Calculate the Internet checksum over a buffer. More...
 
uint16_t uip_ipchksum (void)
 Calculate the IP header checksum of the packet header in uip_buf. More...
 
uint16_t uip_icmp6chksum (void)
 Calculate the ICMP checksum of the packet in uip_buf. More...
 
void uip_init (void)
 uIP initialization function. More...
 
void uip_process (uint8_t flag)
 process the options within a hop by hop or destination option header More...
 
uint16_t uip_htons (uint16_t val)
 Convert a 16-bit quantity from host byte order to network byte order. More...
 
void uip_send (const void *data, int len)
 Send data on the current connection. More...
 
enum rpl_mode rpl_get_mode (void)
 Get the RPL mode. More...
 
enum rpl_mode rpl_set_mode (enum rpl_mode m)
 Set the RPL mode. More...
 

Variables

struct etimer uip_ds6_timer_rs
 Timer for maintenance of data structures.
 
struct etimer uip_ds6_timer_rs
 Timer for maintenance of data structures.
 

"DS6" Data structures

number of rs already sent

uip_ds6_netif_t uip_ds6_if
 
uip_ds6_prefix_t uip_ds6_prefix_list [UIP_DS6_PREFIX_NB]
 The single interface.
 
uint8_t uip_ds6_addr_size
 Prefix list.
 
uint8_t uip_ds6_netif_addr_list_offset
 

ICMPv6 message types

#define ICMP6_DST_UNREACH   1
 dest unreachable
 
#define ICMP6_PACKET_TOO_BIG   2
 packet too big
 
#define ICMP6_TIME_EXCEEDED   3
 time exceeded
 
#define ICMP6_PARAM_PROB   4
 ip6 header bad
 
#define ICMP6_ECHO_REQUEST   128
 Echo request.
 
#define ICMP6_ECHO_REPLY   129
 Echo reply.
 
#define ICMP6_RS   133
 Router Solicitation.
 
#define ICMP6_RA   134
 Router Advertisement.
 
#define ICMP6_NS   135
 Neighbor Solicitation.
 
#define ICMP6_NA   136
 Neighbor advertisement.
 
#define ICMP6_REDIRECT   137
 Redirect.
 
#define ICMP6_RPL   155
 RPL.
 
#define ICMP6_PRIV_EXP_100   100
 Private Experimentation.
 
#define ICMP6_PRIV_EXP_101   101
 Private Experimentation.
 
#define ICMP6_PRIV_EXP_200   200
 Private Experimentation.
 
#define ICMP6_PRIV_EXP_201   201
 Private Experimentation.
 
#define ICMP6_ROLL_TM   ICMP6_PRIV_EXP_200
 ROLL Trickle Multicast.
 

ICMPv6 Destination Unreachable message codes

#define ICMP6_DST_UNREACH_NOROUTE   0
 no route to destination
 
#define ICMP6_DST_UNREACH_ADMIN   1
 administratively prohibited
 
#define ICMP6_DST_UNREACH_NOTNEIGHBOR   2
 not a neighbor(obsolete)
 
#define ICMP6_DST_UNREACH_BEYONDSCOPE   2
 beyond scope of source address
 
#define ICMP6_DST_UNREACH_ADDR   3
 address unreachable
 
#define ICMP6_DST_UNREACH_NOPORT   4
 port unreachable
 

ICMPv6 Time Exceeded message codes

#define ICMP6_TIME_EXCEED_TRANSIT   0
 ttl==0 in transit
 
#define ICMP6_TIME_EXCEED_REASSEMBLY   1
 ttl==0 in reass
 

ICMPv6 Parameter Problem message codes

#define ICMP6_PARAMPROB_HEADER   0
 erroneous header field
 
#define ICMP6_PARAMPROB_NEXTHEADER   1
 unrecognized next header
 
#define ICMP6_PARAMPROB_OPTION   2
 unrecognized option
 

ICMPv6 RFC4443 Message processing and sending

typedef void(* uip_icmp6_echo_reply_callback_t )(uip_ipaddr_t *source, uint8_t ttl, uint8_t *data, uint16_t datalen)
 
typedef struct
uip_icmp6_input_handler 
uip_icmp6_input_handler_t
 
uint8_t uip_icmp6_input (uint8_t type, uint8_t icode)
 Handle an incoming ICMPv6 message. More...
 
void uip_icmp6_register_input_handler (uip_icmp6_input_handler_t *handler)
 Register a handler which can handle a specific ICMPv6 message type. More...
 
void uip_icmp6_error_output (uint8_t type, uint8_t code, uint32_t param)
 Send an icmpv6 error message. More...
 
void uip_icmp6_send (const uip_ipaddr_t *dest, int type, int code, int payload_len)
 Send an icmpv6 message. More...
 
void uip_icmp6_echo_reply_callback_add (struct uip_icmp6_echo_reply_notification *n, uip_icmp6_echo_reply_callback_t c)
 Add a callback function for ping replies. More...
 
void uip_icmp6_echo_reply_callback_rm (struct uip_icmp6_echo_reply_notification *n)
 Remove a callback function for ping replies. More...
 
void uip_icmp6_init (void)
 Initialise the uIP ICMPv6 core.
 
#define UIP_ICMP6_INPUT_SUCCESS   0
 
#define UIP_ICMP6_INPUT_ERROR   1
 
#define UIP_ICMP6_HANDLER_CODE_ANY   0xFF /* Handle all codes for this type */
 
#define UIP_ICMP6_HANDLER(name, type, code, func)   static uip_icmp6_input_handler_t name = { NULL, type, code, func }
 

Pointers to the header structures.

All pointers except UIP_IP_BUF depend on uip_ext_len, which at packet reception, is the total length of the extension headers.

The pointer to ND6 options header also depends on nd6_opt_offset, which we set in each function.

Care should be taken when manipulating these buffers about the value of these length variables

#define UIP_IP_BUF   ((struct uip_ip_hdr *)&uip_buf[UIP_LLH_LEN])
 Pointer to IP header.
 
#define UIP_ICMP_BUF   ((struct uip_icmp_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 Pointer to ICMP header.
 
#define UIP_ND6_RS_BUF   ((uip_nd6_rs *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 
#define UIP_ND6_RA_BUF   ((uip_nd6_ra *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 
#define UIP_ND6_NS_BUF   ((uip_nd6_ns *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 
#define UIP_ND6_NA_BUF   ((uip_nd6_na *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 

General

#define UIP_ND6_HOP_LIMIT   255
 HOP LIMIT to be used when sending ND messages (255)
 
#define UIP_ND6_INFINITE_LIFETIME   0xFFFFFFFF
 INFINITE lifetime.
 

RFC 4861 Host constant

#define UIP_ND6_MAX_RTR_SOLICITATION_DELAY   1
 
#define UIP_ND6_RTR_SOLICITATION_INTERVAL   4
 
#define UIP_ND6_MAX_RTR_SOLICITATIONS   3
 

RFC 4861 Router constants

#define UIP_ND6_SEND_RA   1 /* enable/disable RA sending */
 
#define UIP_ND6_SEND_NA   1 /* enable/disable NA sending */
 
#define UIP_ND6_MAX_RA_INTERVAL   600
 
#define UIP_ND6_MIN_RA_INTERVAL   (UIP_ND6_MAX_RA_INTERVAL / 3)
 
#define UIP_ND6_M_FLAG   0
 
#define UIP_ND6_O_FLAG   0
 
#define UIP_ND6_ROUTER_LIFETIME   3 * UIP_ND6_MAX_RA_INTERVAL
 
#define UIP_ND6_MAX_INITIAL_RA_INTERVAL   16 /*seconds*/
 
#define UIP_ND6_MAX_INITIAL_RAS   3 /*transmissions*/
 
#define UIP_ND6_MIN_DELAY_BETWEEN_RAS   3 /*seconds*/
 
#define UIP_ND6_MAX_RA_DELAY_TIME_MS   500 /*milli seconds*/
 

RFC 4861 Node constant

#define UIP_ND6_MAX_MULTICAST_SOLICIT   3
 
#define UIP_ND6_MAX_UNICAST_SOLICIT   3
 
#define UIP_ND6_REACHABLE_TIME   30000
 
#define UIP_ND6_RETRANS_TIMER   1000
 
#define UIP_ND6_DELAY_FIRST_PROBE_TIME   5
 
#define UIP_ND6_MIN_RANDOM_FACTOR(x)   (x / 2)
 
#define UIP_ND6_MAX_RANDOM_FACTOR(x)   ((x) + (x) / 2)
 

ND6 option types

#define UIP_ND6_OPT_SLLAO   1
 
#define UIP_ND6_OPT_TLLAO   2
 
#define UIP_ND6_OPT_PREFIX_INFO   3
 
#define UIP_ND6_OPT_REDIRECTED_HDR   4
 
#define UIP_ND6_OPT_MTU   5
 
#define UIP_ND6_OPT_TYPE_OFFSET   0
 
#define UIP_ND6_OPT_LEN_OFFSET   1
 
#define UIP_ND6_OPT_DATA_OFFSET   2
 

ND6 message length (excluding options)

#define UIP_ND6_NA_LEN   20
 
#define UIP_ND6_NS_LEN   20
 
#define UIP_ND6_RA_LEN   12
 
#define UIP_ND6_RS_LEN   4
 

ND6 option length in bytes

#define UIP_ND6_OPT_HDR_LEN   2
 
#define UIP_ND6_OPT_PREFIX_INFO_LEN   32
 
#define UIP_ND6_OPT_MTU_LEN   8
 
#define UIP_ND6_OPT_LLAO_LEN   8
 length of a ND6 LLAO option for default L2 type (e.g. More...
 

Neighbor Advertisement flags masks

#define UIP_ND6_NA_FLAG_ROUTER   0x80
 
#define UIP_ND6_NA_FLAG_SOLICITED   0x40
 
#define UIP_ND6_NA_FLAG_OVERRIDE   0x20
 
#define UIP_ND6_RA_FLAG_ONLINK   0x80
 
#define UIP_ND6_RA_FLAG_AUTONOMOUS   0x40
 

ND message structures

typedef struct uip_nd6_ns uip_nd6_ns
 A neighbor solicitation constant part. More...
 
typedef struct uip_nd6_na uip_nd6_na
 A neighbor advertisement constant part. More...
 
typedef struct uip_nd6_rs uip_nd6_rs
 A router solicitation constant part. More...
 
typedef struct uip_nd6_ra uip_nd6_ra
 A router advertisement constant part. More...
 
typedef struct uip_nd6_redirect uip_nd6_redirect
 A redirect message constant part. More...
 

ND Option structures

typedef struct uip_nd6_opt_hdr uip_nd6_opt_hdr
 ND option header.
 
typedef struct
uip_nd6_opt_prefix_info 
uip_nd6_opt_prefix_info
 ND option prefix information.
 
typedef struct uip_nd6_opt_mtu uip_nd6_opt_mtu
 ND option MTU.
 
typedef struct
uip_nd6_opt_redirected_hdr 
uip_nd6_opt_redirected_hdr
 

ND Messages Processing and Generation

void uip_nd6_ns_output (uip_ipaddr_t *src, uip_ipaddr_t *dest, uip_ipaddr_t *tgt)
 Send a neighbor solicitation, send a Neighbor Advertisement. More...
 
void uip_nd6_rs_output (void)
 Send a Router Solicitation. More...
 
void uip_nd6_init (void)
 Initialise the uIP ND core.
 
void uip_nd6_ns_input (void)
 Process a neighbor solicitation. More...
 

Layer 2 variables

uip_lladdr_t uip_lladdr = {{0x00,0x06,0x98,0x00,0x02,0x32}}
 Host L2 address.
 

Layer 3 variables

uint8_t * uip_next_hdr
 Type of the next header in IPv6 header or extension headers. More...
 
uint8_t uip_ext_bitmap = 0
 bitmap we use to record which IPv6 headers we have already seen
 
uint8_t uip_ext_len = 0
 length of the extension headers read. More...
 
uint8_t uip_ext_opt_offset = 0
 length of the header options read
 

Buffer defines

#define FBUF   ((struct uip_tcpip_hdr *)&uip_reassbuf[0])
 
#define UIP_IP_BUF   ((struct uip_ip_hdr *)&uip_buf[UIP_LLH_LEN])
 
#define UIP_ICMP_BUF   ((struct uip_icmp_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_UDP_BUF   ((struct uip_udp_hdr *)&uip_buf[UIP_LLH_LEN + UIP_IPH_LEN])
 
#define UIP_TCP_BUF   ((struct uip_tcp_hdr *)&uip_buf[UIP_LLH_LEN + UIP_IPH_LEN])
 
#define UIP_EXT_BUF   ((struct uip_ext_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_ROUTING_BUF   ((struct uip_routing_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_FRAG_BUF   ((struct uip_frag_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_HBHO_BUF   ((struct uip_hbho_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_DESTO_BUF   ((struct uip_desto_hdr *)&uip_buf[uip_l2_l3_hdr_len])
 
#define UIP_EXT_HDR_OPT_BUF   ((struct uip_ext_hdr_opt *)&uip_buf[uip_l2_l3_hdr_len + uip_ext_opt_offset])
 
#define UIP_EXT_HDR_OPT_PADN_BUF   ((struct uip_ext_hdr_opt_padn *)&uip_buf[uip_l2_l3_hdr_len + uip_ext_opt_offset])
 
#define UIP_EXT_HDR_OPT_RPL_BUF   ((struct uip_ext_hdr_opt_rpl *)&uip_buf[uip_l2_l3_hdr_len + uip_ext_opt_offset])
 
#define UIP_ICMP6_ERROR_BUF   ((struct uip_icmp6_error *)&uip_buf[uip_l2_l3_icmp_hdr_len])
 

Buffer variables

uip_buf_t uip_aligned_buf
 Packet buffer for incoming and outgoing packets.
 
void * uip_appdata
 Pointer to the application data in the packet buffer. More...
 
void * uip_sappdata
 
uint16_t uip_len
 The length of the packet in the uip_buf buffer. More...
 
uint16_t uip_slen
 

General variables

uint8_t uip_flags
 
struct uip_connuip_conn
 Pointer to the current TCP connection. More...
 

TCP defines

#define TCP_FIN   0x01
 
#define TCP_SYN   0x02
 
#define TCP_RST   0x04
 
#define TCP_PSH   0x08
 
#define TCP_ACK   0x10
 
#define TCP_URG   0x20
 
#define TCP_CTL   0x3f
 
#define TCP_OPT_END   0 /* End of TCP options list */
 
#define TCP_OPT_NOOP   1 /* "No-operation" TCP option */
 
#define TCP_OPT_MSS   2 /* Maximum segment size TCP option */
 
#define TCP_OPT_MSS_LEN   4 /* Length of TCP MSS option. */
 

Detailed Description

The uIP IPv6 stack provides new Internet communication abilities to Contiki.

This document describes Ipv6 specific features. For features that are common to the IPv4 and IPv6 code please refer to uIP.


Introduction

Ipv6 is to replace IPv4 in a near future. Indeed, to move to a real Internet of Things a larger address space is required. This extended address space (2^128 instead of 2^32) is one of the key features of IPv6 together with its simplified header format, its improved support for extensions and options, and its new QoS and security capabilities.

The uip IPv6 stack implementation targets constrained devices such as sensors. The code size is around 11.5Kbyte and the RAM usage around 1.7Kbyte (see below for more detailed information). Our implementation follows closely RFC 4294 IPv6 Node Requirements whose goal is to allow "IPv6 to function well and interoperate in a large number of situations and deployments".

The implementation currently does not support any router features (it does not forward packets, send RAs...)


IPv6 Protocol Implementation

This section gives a short overview of the different protocols that are part of the uIP IPv6 stack. A complete description can be found in the corresponding IETF standards which are available at http://www.ietf.org/rfc.html.

Note
The #UIP_CONF_IPV6 compilation flag is used to enable IPv6 (and disable IPv4). It is also recommended to set UIP_CONF_IPV6_CHECKS to 1 if one cannot guarantee that the incoming packets are correctly formed.

IPv6 (RFC 2460)

The IP packets are processed in the uip_process function. After a few validity checks on the IPv6 header, the extension headers are processed until an upper layer (ICMPv6, UDP or TCP) header is found. We support 4 extension headers:

The IPv6 header, extension headers, and options are defined in uip.h.

Although we can receive packets with the extension headers listed above, we do not offer support to send packets with extension headers.

Fragment Reassembly
This part of the code is very similar to the IPv4 fragmentation code. The only difference is that the fragmented packet is not assumed to be a TCP packet. As a result, we use a different timer to time-out reassembly if all fragments have not been received after UIP_REASS_MAXAGE = 60s.

Note
Fragment reassembly is enabled if #UIP_CONF_REASSEMBLY is set to 1.
We can only reassemble packet of at most UIP_LINK_MTU = 1280 bytes as we do not have larger buffers.

Interface and Addressing (RFC 4291, RFC 4861 p.51, RFC 4862 p.10)

An IPv6 address has 128 bits and is defined as follows:

typedef union uip_ip6addr_t {
uint8_t u8[16]
uint16_t u16[8];
} uip_ip6addr_t;

We assume that each node has a single interface of type #uip_netif.

Each interface can have up to #UIP_NETIF_MAX_ADDRESSES unicast IPv6 addresses including its link-local address. It also has a solicited-node multicast address. We assume that the unicast addresses are obtained via stateless address autoconfiguration so that the solicited-node address is the same for all the unicast addresses. Indeed, the solicited-node multicast address is formed by combining the prefix FF02::1:FF00:0/104 and the last 24-bits of the corresponding IPv6 address. When using stateless address autoconfiguration these bits are always equal to the last 24-bits of the link-layer address.

Multicast support

We do not support applications using multicast. Nevertheless, our node should join the all-nodes multicast address, as well as its solicited-node multicast address. Joining the all-nodes multicast address does not require any action. Joining the solicited-node multicast address is done using Multicast Listener Discovery (MLD or MLDv2). More exactly, the node should send a MLD report packet. However this step can be safely skipped and we do so.

Neighbor Discovery (RFC 4861)

"IPv6 nodes on the same link use Neighbor Discovery to discover each other's presence, to determine each other's link-layer addresses, to find routers, and to maintain reachability information about the paths to active neighbors" (citation from the abstract of RFC 4861).

Note
In IPv6 terminology, a link is a communication medium over which nodes can communicate at the link layer, i.e., the layer immediately below IP (e.g.: ethernet, 802.11, etc.). Neighbors are thus nodes attached to the same link.

Neighbor Discovery (ND) replaces ARP in IPv4 but does much more.

Neighbor discovery messages

The structures corresponding to the different message headers and options are in uip-nd6.h. The functions used to send / process this messages are also described in uip-nd6.h although the actual code is in uip-nd6-io.c.

Neighbor discovery structures
We use the following neighbor discovery structures (declared in uip-nd6.c):

Each of this structure has its own add, remove and lookup functions. To update an entry in a ND structure, we first do a lookup to obtain a pointer to the entry, we then directly modify the different entry fields.

Neighbor discovery processes

Stateless Address Autoconfiguration (RFC 4862)

RFC 4862 defines two main processes:

When an interface becomes active, its link-local address is created by combining the FE80::0/64 prefix and the interface ID. DAD is then performed for this link-local address. Available routers are discovered by sending up to #UIP_ND6_MAX_RTR_SOLICITATIONS RS packets. Address autoconfiguration is then performed based on the prefix information received in the RA. The interface initialization is performed in #uip_netif_init.

ICMPv6 (RFC 4443)

We support ICMPv6 Error messages as well as Echo Reply and Echo Request messages. The application used for sending Echo Requests (see ping6.c) is not part of the IP stack.

Note
RFC 4443 stipulates that 'Every ICMPv6 error message MUST include as much of the IPv6 offending (invoking) packet as possible'. In a constrained environment this is not very resource friendly.

The ICMPv6 message headers and constants are defined in uip-icmp6.h.


IPv6 Timers and Processes

The IPv6 stack (like the IPv4 stack) is a Contiki process

PROCESS(tcpip_process, "TCP/IP stack");

In addition to the periodic timer that is used by TCP, five IPv6 specific timers are attached to this process:


Compile time flags and variables

This section just lists all IPv6 related compile time flags. Each flag function is documented in this page in the appropriate section.

/*Boolean flags*/
UIP_CONF_IPV6
/*Integer flags*/
UIP_NETIF_MAX_ADDRESSES
UIP_ND6_MAX_PREFIXES
UIP_ND6_MAX_NEIGHBORS
UIP_ND6_MAX_DEFROUTER

IPv6 Buffers

The IPv6 code uses the same single global buffer as the IPv4 code. This buffer should be large enough to contain one packet of maximum size, i.e., UIP_LINK_MTU = 1280 bytes. When fragment reassembly is enabled an additional buffer of the same size is used.

The only difference with the IPv4 code is the per neighbor buffering that is available when #UIP_CONF_QUEUE_PKT is set to 1. This additional buffering is used to queue one packet per neighbor while performing address resolution for it. This is a very costly feature as it increases the RAM usage by approximately #UIP_ND6_MAX_NEIGHBORS * UIP_LINK_MTU bytes.


IPv6 Code Size

Note
We used Atmel's RAVEN boards with the Atmega1284P MCU (128Kbyte of flash and 16Kbyte of SRAM) to benchmark our code. These numbers are obtained using 'avr-gcc 4.2.2 (WinAVR 20071221)'. Elf is the output format.
The following compilation flags were used:
UIP_CONF_IPV6 1
UIP_NETIF_MAX_ADDRESSES 3
UIP_ND6_MAX_PREFIXES 3
UIP_ND6_MAX_NEIGHBORS 4
UIP_ND6_MAX_DEFROUTER 2

The total IPv6 code size is approximately 11.5Kbyte and the RAM usage around 1.8Kbyte. For an additional NEIGHBOR count 35bytes, 25 for an additional PREFIX, 7 for an additional DEFROUTER, and 25 for an additional ADDRESS.


IPv6 Link Layer dependencies

The IPv6 stack can potentially run on very different link layers (ethernet, 802.15.4, 802.11, etc). The link-layer influences the following IP layer objects:

Moreover, tcpip_output should point to the link-layer function used to send a packet. Similarly, the link-layer should call tcpip_input when an IP packet is received.

The code corresponding to the desired link layer is selected at compilation time (see for example the #UIP_LL_802154 flag).


IPv6 interaction with upper layers

The TCP and the UDP protocol are part of the uIP stack and were left unchanged by the IPv6 implementation. For the application layer, please refer to the application program interface.


IPv6 compliance

IPv6 Node Requirements, RFC4294

This section describes which parts of RFC4294 we are compliant with. For each section, we put between brackets the requirement level.
When all IPv6 related compile flags are set, our stack is fully compliant with RFC4294 (i.e. we implemement all the MUSTs), except for MLD support and redirect function support.

Note
RFC4294 is currently being updated by IETF 6man WG. One of the important points for us in the update is that after discussion on the 6man mailing list, IPSec support will become a SHOULD (was a MUST).
Sub IP layer
We support RFC2464 transmission of IPv6 packets over Ethernet
We will soon support RFC4944 transmission of IPv6 packets over 802.15.4
IP layer

DNS (RFC 1034, 1035, 3152, 3363, 3596) and DHCPv6 (RFC 3315) (conditional MUST)
no support

IPv4 Transition mechanisms RFC 4213 (conditional MUST)
no support

Mobile IP RFC 3775 (MAY / SHOULD)
no support

IPSec RFC 4301 4302 4303 2410 2404 2451 3602(MUSTs) 4305 (SHOULD)
no support

SNMP (MAY)
no support

IPv6 certification through ipv6ready alliance

IPv6ready is the certification authority for IPv6 implementations (http://www.ipv6ready.org). It delivers two certificates (phase 1 and phase 2).
When all the IPv6 related compile flags are set, we pass all the tests for phase 1.
We pass all the tests for phase 2 except:


Macro Definition Documentation

#define UIP_DS6_DEFRT_NBS   0

Configuration.

For all tables (Neighbor cache, Prefix List, Routing Table, Default Router List, Unicast address list, multicast address list, anycast address list), we define:

  • the number of elements requested by the user in contiki configuration (name suffixed by _NBU)
  • the number of elements assigned by the system (name suffixed by _NBS)
  • the total number of elements is the sum (name suffixed by _NB)

Definition at line 62 of file uip-ds6.h.

#define UIP_DS6_PERIOD   (CLOCK_SECOND/10)

General DS6 definitions.

Period for uip-ds6 periodic task

Definition at line 136 of file uip-ds6.h.

Referenced by uip_ds6_init().

#define UIP_ND6_OPT_LLAO_LEN   8

length of a ND6 LLAO option for default L2 type (e.g.

Ethernet)

Definition at line 175 of file uip-nd6.h.

Referenced by uip_nd6_ns_output(), and uip_nd6_rs_output().

#define UIP_ND6_RS_BUF   ((uip_nd6_rs *)&uip_buf[uip_l2_l3_icmp_hdr_len])

Pointers to messages just after icmp header

Definition at line 107 of file uip-nd6.c.

Typedef Documentation

typedef struct uip_ds6_addr uip_ds6_addr_t

Unicast address structure.

typedef struct uip_nd6_na uip_nd6_na

A neighbor advertisement constant part.

Possible option is: TLLAO

typedef struct uip_nd6_ns uip_nd6_ns

A neighbor solicitation constant part.

Possible option is: SLLAO

typedef struct uip_nd6_ra uip_nd6_ra

A router advertisement constant part.

Possible options are: SLLAO, MTU, Prefix Information

A redirect message constant part.

Possible options are: TLLAO, redirected header

typedef struct uip_nd6_rs uip_nd6_rs

A router solicitation constant part.

Possible option is: SLLAO

Function Documentation

enum rpl_mode rpl_get_mode ( void  )

Get the RPL mode.

Return values
TheRPL mode

Definition at line 67 of file rpl.c.

enum rpl_mode rpl_set_mode ( enum rpl_mode  mode)

Set the RPL mode.

Parameters
modeThe new RPL mode
Return values
Theprevious RPL mode

Definition at line 73 of file rpl.c.

References NULL.

uint16_t uip_chksum ( uint16_t *  buf,
uint16_t  len 
)

Calculate the Internet checksum over a buffer.

The Internet checksum is the one's complement of the one's complement sum of all 16-bit words in the buffer.

See RFC1071.

Parameters
bufA pointer to the buffer over which the checksum is to be computed.
lenThe length of the buffer over which the checksum is to be computed.
Returns
The Internet checksum of the buffer.

Definition at line 336 of file uip6.c.

References uip_htons().

uip_ds6_nbr_t * uip_ds6_get_least_lifetime_neighbor ( void  )

This searches inside the neighbor table for the neighbor that is about to
expire the next.

Returns
A reference to the neighbor about to expire the next or NULL if table is empty.

Definition at line 281 of file uip-ds6-nbr.c.

References NULL, and stimer_remaining().

uint16_t uip_htons ( uint16_t  val)

Convert a 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For converting constants to network byte order, use the UIP_HTONS() macro instead.

Definition at line 2298 of file uip6.c.

References UIP_HTONS.

Referenced by mac_LowpanToEthernet(), uip_chksum(), and uip_ipchksum().

void uip_icmp6_echo_reply_callback_add ( struct uip_icmp6_echo_reply_notification *  n,
uip_icmp6_echo_reply_callback_t  c 
)

Add a callback function for ping replies.

Parameters
nA struct uip_icmp6_echo_reply_notification that must have been allocated by the caller
cA pointer to the callback function to be called
        This function adds a callback function to the list of
        callback functions that are called when an ICMP echo
        reply (ping reply) is received. This is used when
        implementing a ping protocol: attach a callback
        function to the ping reply, then send out a ping packet
        with uip_icmp6_send().

        The caller must have statically allocated a struct
        uip_icmp6_echo_reply_notification to hold the internal
        state of the callback function.

        When a ping reply packet is received, all registered
        callback functions are called. The callback functions
        must not modify the contents of the uIP buffer.

Definition at line 395 of file uip-icmp6.c.

References list_add(), and NULL.

void uip_icmp6_echo_reply_callback_rm ( struct uip_icmp6_echo_reply_notification *  n)

Remove a callback function for ping replies.

Parameters
nA struct uip_icmp6_echo_reply_notification that must have been previously added with uip_icmp6_echo_reply_callback_add()
        This function removes a callback function from the list of
        callback functions that are called when an ICMP echo
        reply (ping reply) is received.

Definition at line 405 of file uip-icmp6.c.

References list_remove().

void uip_icmp6_error_output ( uint8_t  type,
uint8_t  code,
uint32_t  param 
)

Send an icmpv6 error message.

Parameters
typetype of the error message
codeof the error message
type32 bit parameter of the error message, semantic depends on error

Definition at line 210 of file uip-icmp6.c.

References ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, uip_ds6_select_src(), uip_ext_len, UIP_ICMP6_ERROR_LEN, uip_icmp6chksum(), UIP_ICMP_BUF, UIP_IP_BUF, uip_ipaddr_copy, uip_is_addr_mcast, uip_is_addr_unspecified, uip_len, UIP_LINK_MTU, and UIP_STAT.

Referenced by uip_process().

uint8_t uip_icmp6_input ( uint8_t  type,
uint8_t  icode 
)

Handle an incoming ICMPv6 message.

Parameters
typeThe ICMPv6 message type
icodeThe ICMPv6 message code
Returns
Success: UIP_ICMP6_INPUT_SUCCESS, Error: UIP_ICMP6_INPUT_ERROR

Generic handler for unknown ICMPv6 types. It will lookup for a registered function capable of handing this message type. The function must have first been registered with uip_icmp6_register_input_handler. The function is in charge of setting uip_len to 0, otherwise the uIPv6 core will attempt to send whatever remains in the UIP_IP_BUF.

A return value of UIP_ICMP6_INPUT_ERROR means that a handler could not be invoked. This is most likely because the ICMPv6 type does not have a valid handler associated with it.

UIP_ICMP6_INPUT_SUCCESS signifies that a handler was found for this ICMPv6 type and that it was invoked. It does NOT provide any indication whatsoever regarding whether the handler itself succeeded.

Definition at line 100 of file uip-icmp6.c.

References NULL.

Referenced by uip_process().

void uip_icmp6_register_input_handler ( uip_icmp6_input_handler_t *  handler)

Register a handler which can handle a specific ICMPv6 message type.

Parameters
handlerA pointer to the handler

Definition at line 117 of file uip-icmp6.c.

References list_add().

Referenced by uip_icmp6_init(), and uip_nd6_init().

void uip_icmp6_send ( const uip_ipaddr_t *  dest,
int  type,
int  code,
int  payload_len 
)

Send an icmpv6 message.

Parameters
destdestination address of the message
typetype of the message
codeof the message
payload_lenlength of the payload

Definition at line 297 of file uip-icmp6.c.

References tcpip_ipv6_output(), uip_ds6_select_src(), uip_icmp6chksum(), UIP_ICMP_BUF, UIP_IP_BUF, and uip_len.

uint16_t uip_icmp6chksum ( void  )

Calculate the ICMP checksum of the packet in uip_buf.

Returns
The ICMP checksum of the ICMP packet in uip_buf

Definition at line 387 of file uip6.c.

Referenced by mac_translateIcmpLinkLayer(), uip_icmp6_error_output(), uip_icmp6_send(), uip_nd6_ns_output(), uip_nd6_rs_output(), and uip_process().

void uip_init ( void  )

uIP initialization function.

This function should be called at boot up to initilize the uIP TCP/IP stack.

Definition at line 411 of file uip6.c.

References uip_udp_conn::lport, UIP_CONNS, uip_ds6_init(), uip_icmp6_init(), UIP_LISTENPORTS, uip_nd6_init(), and UIP_UDP_CONNS.

uint16_t uip_ipchksum ( void  )

Calculate the IP header checksum of the packet header in uip_buf.

The IP header checksum is the Internet checksum of the 20 bytes of the IP header.

Returns
The IP header checksum of the IP header in the uip_buf buffer.

Definition at line 343 of file uip6.c.

References uip_htons(), and UIP_LLH_LEN.

void uip_nd6_ns_input ( void  )

Process a neighbor solicitation.

The NS can be received in 3 cases (procedures):

  • sender is performing DAD (ip src = unspecified, no SLLAO option)
  • sender is performing NUD (ip dst = unicast)
  • sender is performing address resolution (ip dest = solicited node mcast address)

We do:

  • if the tgt belongs to me, reply, otherwise ignore
  • if i was performing DAD for the same address, two cases: – I already sent a NS, hence I win – I did not send a NS yet, hence I lose

If we need to send a NA in response (i.e. the NS was done for NUD, or address resolution, or DAD and there is a conflict), we do it in this function: set src, dst, tgt address in the three cases, then for all cases set the rest, including SLLAO

void uip_nd6_ns_output ( uip_ipaddr_t *  src,
uip_ipaddr_t *  dest,
uip_ipaddr_t *  tgt 
)

Send a neighbor solicitation, send a Neighbor Advertisement.

Parameters
srcpointer to the src of the NS if known
destpointer to ip address to send the NS, for DAD or ADDR Resol, MUST be NULL, for NUD, must be correct unicast dest
tgtpointer to ip address to fill the target address field, must not be NULL
  • RFC 4861, 7.2.2 : "If the source address of the packet prompting the solicitation is the same as one of the addresses assigned to the outgoing interface, that address SHOULD be placed in the IP Source Address of the outgoing solicitation. Otherwise, any one of the addresses assigned to the interface should be used." This is why we have a src ip address as argument. If NULL, we will do src address selection, otherwise we use the argument.
  • we check if it is a NS for Address resolution or NUD, if yes we include a SLLAO option, otherwise no.

Definition at line 328 of file uip-nd6.c.

References ICMP6_NS, NULL, uip_create_solicited_node, uip_create_unspecified, uip_ds6_select_src(), uip_ext_len, uip_icmp6chksum(), UIP_ICMP_BUF, UIP_IP_BUF, uip_ipaddr_copy, uip_is_addr_unspecified, uip_len, UIP_ND6_HOP_LIMIT, UIP_ND6_OPT_LLAO_LEN, and UIP_STAT.

Referenced by tcpip_ipv6_output().

void uip_nd6_rs_output ( void  )

Send a Router Solicitation.

src is chosen through the uip_netif_select_src function. If src is unspecified (i.e. we do not have a preferred address yet), then we do not put a SLLAO option (MUST NOT in RFC 4861). Otherwise we do.

RS message format, possible option is SLLAO, MUST NOT be included if source = unspecified SHOULD be included otherwise

Definition at line 740 of file uip-nd6.c.

References ICMP6_RS, uip_create_linklocal_allrouters_mcast, uip_ds6_select_src(), uip_icmp6chksum(), UIP_ICMP_BUF, UIP_IP_BUF, uip_is_addr_unspecified, uip_len, UIP_ND6_HOP_LIMIT, UIP_ND6_OPT_LLAO_LEN, and UIP_STAT.

Referenced by uip_ds6_send_rs().

void uip_process ( uint8_t  flag)
void uip_send ( const void *  data,
int  len 
)

Send data on the current connection.

This function is used to send out a single segment of TCP data. Only applications that have been invoked by uIP for event processing can send data.

The amount of data that actually is sent out after a call to this function is determined by the maximum amount of data TCP allows. uIP will automatically crop the data so that only the appropriate amount of data is sent. The function uip_mss() can be used to query uIP for the amount of data that actually will be sent.

Note
This function does not guarantee that the sent data will arrive at the destination. If the data is lost in the network, the application will be invoked with the uip_rexmit() event being set. The application will then have to resend the data using this function.
Parameters
dataA pointer to the data which is to be sent.
lenThe maximum amount of data bytes to be sent.

Definition at line 2310 of file uip6.c.

References NULL, UIP_BUFSIZE, and UIP_LLH_LEN.

Variable Documentation

void* uip_appdata

Pointer to the application data in the packet buffer.

This pointer points to the application data when the application is called. If the application wishes to send data, the application may use this space to write the data into before calling uip_send().

Definition at line 174 of file uip6.c.

struct uip_conn* uip_conn

Pointer to the current TCP connection.

The uip_conn pointer can be used to access the current TCP connection.

Definition at line 197 of file uip6.c.

uint8_t uip_ext_len = 0

length of the extension headers read.

The length of the extension headers.

updated each time we process a header

Definition at line 137 of file uip6.c.

Referenced by tcpip_input(), tcpip_ipv6_output(), uip_icmp6_error_output(), uip_nd6_ns_output(), and uip_process().

uint16_t uip_len

The length of the packet in the uip_buf buffer.

The global variable uip_len holds the length of the packet in the uip_buf buffer.

When the network device driver calls the uIP input function, uip_len should be set to the length of the packet in the uip_buf buffer.

When sending packets, the device driver should use the contents of the uip_len variable to determine the length of the outgoing packet.

Definition at line 185 of file uip6.c.

uint8_t* uip_next_hdr

Type of the next header in IPv6 header or extension headers.

Can be the next header field in the IPv6 header or in an extension header. When doing fragment reassembly, we must change the value of the next header field in the header before the fragmentation header, hence we need a pointer to this field.

Definition at line 130 of file uip6.c.

Referenced by uip_process().